Difference between revisions of "SAT@home"

From BOINC Wiki
(SAT data)
 
(improving project description)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
    <project>
+
[[File:Sat logo.png|200px|right]]
        <name>SAT@home</name>
+
{{Projects
        <url>http://sat.isa.ru/pdsat/</url>
+
|1=SAT@home
        <general_area>Mathematics, computing, and games</general_area>
+
|2=http://sat.isa.ru/pdsat/
        <specific_area>Computer Science</specific_area>
+
|3=Solve hard and practically important problems (discrete functions inversion problems, discrete optimization, bioinformatics, etc.) that can be effectively reduced to Boolean satisfiability problem.
        <description><![CDATA[Solve hard and practically important problems (discrete functions inversion problems, discrete optimization, bioinformatics, etc.) that can be effectively reduced to Boolean satisfiability problem.]]></description>
+
|4=Linux, Windows
        <home>Institute for System Dynamics and Control Theory and Institute for Information Transmission Problems, Russian Academy of Science</home>
+
|5=No
    <platforms>
+
|6=No
        <name>i686-pc-linux-gnu</name>
+
}}
        <name>windows_intelx86</name>
 
        <name>windows_x86_64</name>
 
        <name>x86_64-pc-linux-gnu</name>
 
    </platforms>
 
      <image>https://boinc.berkeley.edu/images/sat_logo.png</image>
 
      <summary>Study computational complexity</summary>
 
    </project>
 
    <project>
 
        <name>NumberFields@home</name>
 
        <url>http://numberfields.asu.edu/NumberFields/</url>
 
        <general_area>Mathematics, computing, and games</general_area>
 
        <specific_area>Mathematics</specific_area>
 
        <description><![CDATA[NumberFields@home searches for fields with special properties. The primary application of this research is in the realm of algebraic number theory. Number theorists can mine the data for interesting patterns to help them formulate conjectures about number fields. Ultimately, this research will lead to a deeper understanding of the profound properties of numbers, the basic building blocks of all mathematics.]]></description>
 
        <home>Arizona State University, school of Mathematics</home>
 
    <platforms>
 
        <name>i686-pc-linux-gnu</name>
 
        <name>windows_intelx86</name>
 
        <name>windows_x86_64</name>
 
        <name>x86_64-apple-darwin</name>
 
        <name>x86_64-pc-linux-gnu</name>
 
    </platforms>
 
      <image>https://boinc.berkeley.edu/images/nf_banner_10.jpg</image>
 
      <summary>Do research in algebraic number theory</summary>
 
    </project>
 

Latest revision as of 21:39, 14 February 2017

Sat logo.png

Project name: SAT@home
Project URL: http://sat.isa.ru/pdsat/
Description: Solve hard and practically important problems (discrete functions inversion problems, discrete optimization, bioinformatics, etc.) that can be effectively reduced to Boolean satisfiability problem.
Platforms: Linux, Windows
Calculates using GPUs: No
Has an OpenGL screen saver: No